We study hidden-action principal-agent problems with multiple agents. These are problems in which a principal commits to an outcome-dependent payment scheme in order to incentivize some agents to take costly, unobservable actions that lead to favorable outcomes. Previous works on multi-agent problems study models where the principal observes a single outcome determined by the actions of all the agents. Such models considerably limit the contracting power of the principal, since payments can only depend on the joint result of all the agents' actions, and there is no way of paying each agent for their individual result. In this paper, we consider a model in which each agent determines their own individual outcome as an effect of their action only, the principal observes all the individual outcomes separately, and they perceive a reward that jointly depends on all these outcomes. This considerably enhances the principal's contracting capabilities, by allowing them to pay each agent on the basis of their individual result. We analyze the computational complexity of finding principal-optimal contracts, revolving around two newly-introduced properties of principal's rewards, which we call IR-supermodularity and DR-submodularity. Intuitively, the former captures settings with increasing returns, where the rewards grow faster as the agents' effort increases, while the latter models the case of diminishing returns, in which rewards grow slower instead. These two properties naturally model two common real-world phenomena, namely diseconomies and economies of scale. In this paper, we first address basic instances in which the principal knows everything about the agents, and, then, more general Bayesian instances where each agent has their own private type determining their features, such as action costs and how actions stochastically determine individual outcomes.


翻译:我们研究的是多个代理商的隐性主要代理商问题。 这些问题中, 委托人承诺对基于结果的付款计划作出承诺, 以便激励某些代理商采取代价高昂、不可观察的行动, 从而导致有利的结果。 之前关于多代理问题的研究模型, 委托人观察由所有代理商的行动决定的单一结果。 这些模型大大限制了委托人的订约能力, 因为支付只能取决于所有代理商行动的共同结果, 并且没有办法支付每个代理商的个人结果。 在本文中, 我们把每个代理商决定自己结果的模式视为他们行动的一种效果, 委托人将所有个别结果分开观察, 他们认为一种奖励, 共同取决于所有这些结果。 这大大增强了委托人的订约能力, 允许他们根据每个代理商的个别结果向每个代理商支付费用。 我们分析了寻找主要- 优化合同的计算复杂性, 围绕两个新引入的本公司报酬的特性, 我们称之为IR超度和DR的特性, 作为他们自己行动的一种效果的一种效果, 委托人将所有个别结果分开观察, 并且他们认为一个奖励的奖励 联合决定着所有这些结果的每个过程的事例, 最终的回报, 排序的回报, 反过来的回报, 反过来的回报, 反过来的回报, 反过来的回报, 反过来的回报, 反过来的发生, 一种, 的回报, 反过来的回报, 一种是, 排序的回报, 一种是, 排序的回报, 排序的回报, 一种是, 排序, 一种,,, 一种是, 一种是, 一种, 一种是, 一种, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是, 一种是,一种是, 一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,一种是,

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月21日
Arxiv
0+阅读 · 2023年3月20日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员