We present a model to predict fine-grained emotions along the continuous dimensions of valence, arousal, and dominance (VAD) with a corpus with categorical emotion annotations. Our model is trained by minimizing the EMD (Earth Mover's Distance) loss between the predicted VAD score distribution and the categorical emotion distributions sorted along VAD, and it can simultaneously classify the emotion categories and predict the VAD scores for a given sentence. We use pre-trained RoBERTa-Large and fine-tune on three different corpora with categorical labels and evaluate on EmoBank corpus with VAD scores. We show that our approach reaches comparable performance to that of the state-of-the-art classifiers in categorical emotion classification and shows significant positive correlations with the ground truth VAD scores. Also, further training with supervision of VAD labels leads to improved performance especially when dataset is small. We also present examples of predictions of appropriate emotion words that are not part of the original annotations.


翻译:我们展示了一种模型,根据价值、刺激和支配(VAD)的连续维度来预测细微的情感,并附有明确的情感说明。我们的模型通过将预测VAD分数分布与根据VAD分类的绝对情感分布之间的 EMD(地球移动者距离)损失最小化来培训。它可以同时对情感类别进行分类,并预测某一句子的VAD分数。我们使用预先培训的RoBERTA-Laorge和微调,对三个具有绝对标签的分数不同的公司进行微调。我们用VAD分来评估EmoBank Cample的分数。我们展示了我们的方法在绝对情感分类方面达到与最先进的分类员的类似性能,并展示了与地面真理VAD分数的重大正相关关系。此外,进一步培训对VAD标签的监督可以提高性能,特别是在数据集很小的情况下。我们还对三个带有绝对标签的分数的分数不同的公司进行预训和微调。我们还举例说明了与原始说明中未包含的适当情感词的预测。

1
下载
关闭预览

相关内容

【ACM Multimedia2021-tutorial】可信赖多媒体分析
专知会员服务
17+阅读 · 2021年10月20日
专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
31+阅读 · 2021年6月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
1+阅读 · 2021年10月30日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
24+阅读 · 2020年3月11日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
VIP会员
相关VIP内容
【ACM Multimedia2021-tutorial】可信赖多媒体分析
专知会员服务
17+阅读 · 2021年10月20日
专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
31+阅读 · 2021年6月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员