We present a model to predict fine-grained emotions along the continuous dimensions of valence, arousal, and dominance (VAD) with a corpus with categorical emotion annotations. Our model is trained by minimizing the EMD (Earth Mover's Distance) loss between the predicted VAD score distribution and the categorical emotion distributions sorted along VAD, and it can simultaneously classify the emotion categories and predict the VAD scores for a given sentence. We use pre-trained RoBERTa-Large and fine-tune on three different corpora with categorical labels and evaluate on EmoBank corpus with VAD scores. We show that our approach reaches comparable performance to that of the state-of-the-art classifiers in categorical emotion classification and shows significant positive correlations with the ground truth VAD scores. Also, further training with supervision of VAD labels leads to improved performance especially when dataset is small. We also present examples of predictions of appropriate emotion words that are not part of the original annotations.
翻译:我们展示了一种模型,根据价值、刺激和支配(VAD)的连续维度来预测细微的情感,并附有明确的情感说明。我们的模型通过将预测VAD分数分布与根据VAD分类的绝对情感分布之间的 EMD(地球移动者距离)损失最小化来培训。它可以同时对情感类别进行分类,并预测某一句子的VAD分数。我们使用预先培训的RoBERTA-Laorge和微调,对三个具有绝对标签的分数不同的公司进行微调。我们用VAD分来评估EmoBank Cample的分数。我们展示了我们的方法在绝对情感分类方面达到与最先进的分类员的类似性能,并展示了与地面真理VAD分数的重大正相关关系。此外,进一步培训对VAD标签的监督可以提高性能,特别是在数据集很小的情况下。我们还对三个带有绝对标签的分数的分数不同的公司进行预训和微调。我们还举例说明了与原始说明中未包含的适当情感词的预测。