Empathy is a vital factor that contributes to mutual understanding, and joint problem-solving. In recent years, a growing number of studies have recognized the benefits of empathy and started to incorporate empathy in conversational systems. We refer to this topic as empathetic conversational systems. To identify the critical gaps and future opportunities in this topic, this paper examines this rapidly growing field using five review dimensions: (i) conceptual empathy models and frameworks, (ii) adopted empathy-related concepts, (iii) datasets and algorithmic techniques developed, (iv) evaluation strategies, and (v) state-of-the-art approaches. The findings show that most studies have centered on the use of the EMPATHETICDIALOGUES dataset, and the text-based modality dominates research in this field. Studies mainly focused on extracting features from the messages of the users and the conversational systems, with minimal emphasis on user modeling and profiling. Notably, studies that have incorporated emotion causes, external knowledge, and affect matching in the response generation models, have obtained significantly better results. For implementation in diverse real-world settings, we recommend that future studies should address key gaps in areas of detecting and authenticating emotions at the entity level, handling multimodal inputs, displaying more nuanced empathetic behaviors, and encompassing additional dialogue system features.


翻译:近些年来,越来越多的研究已经认识到共鸣的好处,并开始将共鸣纳入对谈系统。我们把这个题目称为 " 同情对话系统 " 。我们把这个题目称为 " 同情对话系统 " 。为了找出这个专题中的关键差距和未来的机会,本文件利用五个审查层面来研究这个迅速增长的领域:(一) 概念共鸣模式和框架,(二) 采用与共鸣有关的概念,(三) 开发的数据集和算法技术,(四) 评价战略,以及(五) 最先进的方法。研究结果显示,大多数研究都集中在使用EMPATHITITITALOUUES数据集, 以及基于文本的模式主导了这一领域的研究。研究主要侧重于从用户和对话系统的信息中提取特征,而很少强调用户的建模和特征。值得注意的是,已经将情感原因、外部知识以及影响反应生成模型的匹配性研究取得了显著的更好结果。为了在不同的现实世界环境中实施,我们建议未来系统研究应该研究如何弥补实体在更真实的情感方面进行更多的研究。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月2日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
23+阅读 · 2021年10月11日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员