The number of noisy images required for molecular reconstruction in single-particle cryo-electron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly-oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain new theoretical and computational contributions for this challenging non-linear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the non-sparse case, where the third-order autocorrelation is required for uniformly-oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography.
翻译:在单颗粒冷冻电镜(cryo-EM)中,用于分子重建的嘈杂图像数量由观察到的随机定向、嘈杂的投影图像的自相关性所决定。在本文中,我们考虑施加稀疏先验对分子的影响。我们使用信号处理、优化和应用代数几何的技术,为这个具有挑战性的非线性逆问题提供了新的理论和计算贡献,同时考虑了稀疏约束。我们证明了分子结构建模为高斯和的模型可以通过它们的投影图像的二阶自相关唯一确定,这意味着样本复杂度与噪声方差的平方成正比。这个理论改进了非稀疏情况,其中需要均匀定向粒子图像的三阶自相关,并且样本复杂度与噪声方差的立方成正比。此外,我们构建了一个计算框架来重建在小波基础上稀疏的分子结构。该方法将分子的稀疏表示与用于X射线晶体学中解相位问题的基于投影的技术相结合。