We construct finite element Stokes complexes on tetrahedral meshes in three-dimensional space. In the lowest order case, the finite elements in the complex have 4, 18, 16, and 1 degrees of freedom, respectively. As a consequence, we obtain gradcurl-conforming finite elements and inf-sup stable Stokes pairs on tetrahedra which fit into complexes. We show that the new elements lead to convergent algorithms for solving a gradcurl model problem as well as solving the Stokes system with precise divergence-free condition. We demonstrate the validity of the algorithms by numerical experiments.
翻译:我们用三维空间在四面环形膜上建造了一定的元素斯托克斯综合体。 在最低顺序的情况下,该综合体的有限元素分别有4、18、16和1度的自由度。结果,我们在四面环形上获得了符合复杂条件的有分解和成像的有限元素和内嵌稳定的成像配方。我们发现,这些新元素可以产生趋同的算法,解决分解模型问题,并以精确的无差异条件解决斯托克斯系统。我们通过数字实验来证明算法的有效性。