In this work, we present a reduced-order model for a nonlinear cross-diffusion problem from population dynamics, for the Shigesada-Kawasaki-Teramoto (SKT) equation with Lotka-Volterra kinetics. The finite-difference discretization of the SKT equation in space results in a system of linear--quadratic ordinary differential equations (ODEs). The reduced order model (ROM) has the same linear-quadratic structure as the full order model (FOM). Using the linear-quadratic structure of the ROM, the reduced-order solutions are computed independent of the full solutions with the proper orthogonal decomposition (POD). The computation of the reduced solutions is further accelerated by applying tensorial POD. The formation of the patterns of the SKT equation consists of a fast transient phase and a long steady-state phase. Reduced order solutions are computed by separating the time, into two-time intervals. In numerical experiments, we show for one-and two-dimensional SKT equations with pattern formation, the reduced-order solutions obtained in the time-windowed form, i.e., principal decomposition framework (P-POD), are more accurate than the global POD solutions (G-POD) obtained in the whole time interval. Furthermore, we show the decrease of the entropy numerically by the reduced solutions, which is important for the global existence of nonlinear cross-diffusion equations such as the SKT equation.
翻译:在这项工作中,我们为与Lotka-Voltererra动能学的SKT方程式(SKT)的SKT方程式,提出了一个从人口动态中产生非线性交叉扩散问题的减少顺序模型。SKT方程式在空间中的有限差异分化导致一个线性-横向普通差异方程式(ODEs)系统。减序模型(ROM)具有与全顺序模型(FOM)相同的线性赤道结构。在数字实验中,使用ROM线性方程式的线性赤道结构,减序解决方案的计算独立于全方程式的全方程式。通过应用高压POD进一步加速计算减少的解决方案。SKT方程式的形成模式是一个快速的中转阶段和一个长期稳定阶段。通过将时间间隔(FOM)分解为双线式。在数字实验中,我们显示一维和二维SKT方方方方方程式的跨方程式,其结构形成适当的正方程式,其缩式解决方案的计算速度比SOD方程式的全时空框框架(通过SOD方位显示的缩式格式,这种系统式式的全方程式格式显示整个系统格式中,这种缩式的计算方式显示为双方位式。