Active particles are entities that sustain persistent out-of-equilibrium motion by consuming energy. Under certain conditions, they exhibit the tendency to self-organize through coordinated movements, such as swarming via aggregation. While performing non-cooperative foraging tasks, the emergence of such swarming behavior in foragers, exemplifying active particles, has been attributed to the partial observability of the environment, in which the presence of another forager can serve as a proxy signal to indicate the potential presence of a food source or a resource patch. In this paper, we validate this phenomenon by simulating multiple self-propelled foragers as they forage from multiple resource patches in a non-cooperative manner. These foragers operate in a continuous two-dimensional space with stochastic position updates and partial observability. We evolve a shared policy in the form of a continuous-time recurrent neural network that serves as a velocity controller for the foragers. To this end, we use an evolutionary strategy algorithm wherein the different samples of the policy-distribution are evaluated in the same rollout. Then we show that agents are able to learn to adaptively forage in the environment. Next, we show the emergence of swarming in the form of aggregation among the foragers when resource patches are absent. We observe that the strength of this swarming behavior appears to be inversely proportional to the amount of resource stored in the foragers, which supports the risk-sensitive foraging claims. Empirical analysis of the learned controller's hidden states in minimal test runs uncovers their sensitivity to the amount of resource stored in a forager. Clamping these hidden states to represent a lesser amount of resource hastens its learned aggregation behavior.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
84+阅读 · 2022年7月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员