EMG (Electromyograph) signal based gesture recognition can prove vital for applications such as smart wearables and bio-medical neuro-prosthetic control. Spiking Neural Networks (SNNs) are promising for low-power, real-time EMG gesture recognition, owing to their inherent spike/event driven spatio-temporal dynamics. In literature, there are limited demonstrations of neuromorphic hardware implementation (at full chip/board/system scale) for EMG gesture classification. Moreover, most literature attempts exploit primitive SNNs based on LIF (Leaky Integrate and Fire) neurons. In this work, we address the aforementioned gaps with following key contributions: (1) Low-power, high accuracy demonstration of EMG-signal based gesture recognition using neuromorphic Recurrent Spiking Neural Networks (RSNN). In particular, we propose a multi-time scale recurrent neuromorphic system based on special double-exponential adaptive threshold (DEXAT) neurons. Our network achieves state-of-the-art classification accuracy (90%) while using ~53% lesser neurons than best reported prior art on Roshambo EMG dataset. (2) A new multi-channel spike encoder scheme for efficient processing of real-valued EMG data on neuromorphic systems. (3) Unique multi-compartment methodology to implement complex adaptive neurons on Intel's dedicated neuromorphic Loihi chip is shown. (4) RSNN implementation on Loihi (Nahuku 32) achieves significant energy/latency benefits of ~983X/19X compared to GPU for batch size as 50.
翻译:电磁感应仪( EMEG) 以信号为基础的手势识别对于智能磨损器和生物医学神经神经神经质测试控制等应用来说至关重要。 Spiking神经网络(SNNS)具有低功率实时 EMG 动作识别的希望,因为其具有内在的峰值/日驱动神经时空动态。在文献中,对EMG 动作分类来说,神经变异硬件实施(全芯片/机板/系统规模)的示范有限。此外,大多数文献尝试利用原始SNNN(基于LIF(液态整合和火)神经神经神经神经质测试。在这项工作中,我们用以下关键贡献来解决上述差距:(1) 低功率,高精度展示基于EMG信号的动作识别,使用神经变异常驱动神经神经网络(RSNNNN) 。我们提议以特殊的双电适应阈限(DEXAT) 神经元(DEXAT) 性。我们的网络在精度分类精度(90 %),同时使用~53% 的神经质神经质系统(LOS) IMA- Streal-stalstal) IME-stal IMG) IME-stystelational AS-stal 系统对前的精度操作系统进行精度的精度的精度的精度操作的精度的精度的精度的精度的精度的精度的精度分析。