Socially Assistive Robots (SARs) are robots that are designed to replicate the role of a caregiver, coach, or teacher, providing emotional, cognitive, and social cues to support a specific group. SARs are becoming increasingly prevalent, especially in elderly care. Effective communication, both explicit and implicit, is a critical aspect of human-robot interaction involving SARs. Intent communication is necessary for SARs to engage in effective communication with humans. Biometrics can provide crucial information about a person's identity or emotions. By linking these biometric signals to the communication of intent, SARs can gain a profound understanding of their users and tailor their interactions accordingly. The development of reliable and robust biometric sensing and analysis systems is critical to the success of SARs. In this work, we focus on four different aspects to evaluate the communication of intent involving SARs, existing works, and our outlook on future works and applications.


翻译:社会辅助机器人(SAR)是被设计成模拟照顾者、教练或教师角色,为其特定群体提供情感、认知和社交线索的机器人。SAR变得越来越普遍,尤其是在老年护理领域。有效的沟通,包括显式和隐式的,是涉及SAR的人机交互的关键方面。意图沟通对于SAR与人有效沟通是必要的。生物特征可以提供关于一个人身份或情绪的重要信息。将这些生物特征信号与意图沟通联系起来,SAR可以深入了解其用户并相应地量身定制其交互。开发可靠和稳健的生物特征感知和分析系统对于SAR的成功非常重要。在这项工作中,我们关注评估涉及SAR的意图沟通的四个不同方面,现有的工作以及我们对未来工作和应用的展望。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
24+阅读 · 2021年6月25日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员