We report on a significant discovery linking deep convolutional neural networks (CNN) to biological vision and fundamental particle physics. A model of information propagation in a CNN is proposed via an analogy to an optical system, where bosonic particles (i.e. photons) are concentrated as the 2D spatial resolution of the image collapses to a focal point $1\times 1=1$. A 3D space $(x,y,t)$ is defined by $(x,y)$ coordinates in the image plane and CNN layer $t$, where a principal ray $(0,0,t)$ runs in the direction of information propagation through both the optical axis and the image center pixel located at $(x,y)=(0,0)$, about which the sharpest possible spatial focus is limited to a circle of confusion in the image plane. Our novel insight is to model the principal optical ray $(0,0,t)$ as geometrically equivalent to the medial vector in the positive orthant $I(x,y) \in R^{N+}$ of a $N$-channel activation space, e.g. along the greyscale (or luminance) vector $(t,t,t)$ in $RGB$ colour space. Information is thus concentrated into an energy potential $E(x,y,t)=\|I(x,y,t)\|^2$, which, particularly for bottleneck layers $t$ of generic CNNs, is highly concentrated and symmetric about the spatial origin $(0,0,t)$ and exhibits the well-known "Sombrero" potential of the boson particle. This symmetry is broken in classification, where bottleneck layers of generic pre-trained CNN models exhibit a consistent class-specific bias towards an angle $\theta \in U(1)$ defined simultaneously in the image plane and in activation feature space. Initial observations validate our hypothesis from generic pre-trained CNN activation maps and a bare-bones memory-based classification scheme, with no training or tuning. Training from scratch using a random $U(1)$ class label the leads to improved classification in all cases.
翻译:我们报告了一个将深度神经神经网络(CNN)与生物视觉和基本粒子物理学连接起来的重大发现。 通过对光学系统进行类比,提出了一个CNN信息传播模式。 在光学系统中, 恒星颗粒( 即光子) 的2D空间分辨率集中到图像的焦点 1=1美元。 一个 3D空间 $( x,y, t) 由图像平面和CNN层的美元( y) 坐标定义为$( y) 美元。 其中, 一个主线性( 0. 0, t) 美元( 美元) 在光学轴轴和图像中心中, 通过光学轴轴轴( y) 粒子( y) 传播信息, 最敏锐的空间焦点限于图像平面上的混乱。 我们的新洞察是所有主要光线$( 0. 0, t) 等量( 美元) 等量与介质( 美元) 等量( x, y) 等量( R%, 约 RN 美元) 信息中, 平面( 平面( 美元) 平面电压- dreal- dreal) 10) 数据中, 的电压( 10美元) 电压中, 数据中, 等电压( 数据中, 以 美元, 美元, 美元, 美元, 美元) 美元, 美元, 美元, 等量( 美元) 流数据, 度( 美元, 美元) 电流体( 电流体( 美元) 美元) 度) 电流体( 流数据- d) 流数据, 度), 度( 度) 度),,,,,, 数据, 数据, 数据- d), 数据,,,,, 度(,, 流层层层层压, 美元, 美元,, 美元, 美元, 美元, 美元, 美元, 美元, 美元,, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 度( 美元, 美元,