Recent learning-based image fusion methods have marked numerous progress in pre-registered multi-modality data, but suffered serious ghosts dealing with misaligned multi-modality data, due to the spatial deformation and the difficulty narrowing cross-modality discrepancy. To overcome the obstacles, in this paper, we present a robust cross-modality generation-registration paradigm for unsupervised misaligned infrared and visible image fusion (IVIF). Specifically, we propose a Cross-modality Perceptual Style Transfer Network (CPSTN) to generate a pseudo infrared image taking a visible image as input. Benefiting from the favorable geometry preservation ability of the CPSTN, the generated pseudo infrared image embraces a sharp structure, which is more conducive to transforming cross-modality image alignment into mono-modality registration coupled with the structure-sensitive of the infrared image. In this case, we introduce a Multi-level Refinement Registration Network (MRRN) to predict the displacement vector field between distorted and pseudo infrared images and reconstruct registered infrared image under the mono-modality setting. Moreover, to better fuse the registered infrared images and visible images, we present a feature Interaction Fusion Module (IFM) to adaptively select more meaningful features for fusion in the Dual-path Interaction Fusion Network (DIFN). Extensive experimental results suggest that the proposed method performs superior capability on misaligned cross-modality image fusion.
翻译:最近基于学习的图像融合方法在预先注册的多模式数据方面取得了许多进展,但由于空间变形和缩小跨模式差异的难度,在与多模式数据不匹配的多模式数据方面遭遇了严重的幽灵,但由于空间变形和缩小跨模式差异的难度,出现了与不协调的红外线和可见图像融合(IVIF)存在的障碍。具体地说,我们提议建立一个跨模式的感知风格传输网络(CPSTN),以生成假红外线图像,将可见图像作为投入。从CPSTN的有利几何保存能力中受益,生成的假红外线图像包含一个锐利的结构,这更有利于将跨模式图像调整转化为单一模式登记,同时对红外图像和可见图像融合结构敏感。在本案中,我们提出一个多层次的更新更新登记网络(MRRRRN),以预测扭曲和假红红外图像之间的迁移矢量场,并在单一模式设置下重建注册的红外线图像。此外,将已登记的红外线图像和可见的红外线图像升级能力更好地结合了已注册的红外线图像和红外线图像的升级模型模型。