Single Image Super-resolution (SISR) produces high-resolution images with fine spatial resolutions from aremotely sensed image with low spatial resolution. Recently, deep learning and generative adversarial networks(GANs) have made breakthroughs for the challenging task of single image super-resolution (SISR). However, thegenerated image still suffers from undesirable artifacts such as, the absence of texture-feature representationand high-frequency information. We propose a frequency domain-based spatio-temporal remote sensingsingle image super-resolution technique to reconstruct the HR image combined with generative adversarialnetworks (GANs) on various frequency bands (TWIST-GAN). We have introduced a new method incorporatingWavelet Transform (WT) characteristics and transferred generative adversarial network. The LR image hasbeen split into various frequency bands by using the WT, whereas, the transfer generative adversarial networkpredicts high-frequency components via a proposed architecture. Finally, the inverse transfer of waveletsproduces a reconstructed image with super-resolution. The model is first trained on an external DIV2 Kdataset and validated with the UC Merceed Landsat remote sensing dataset and Set14 with each image sizeof 256x256. Following that, transferred GANs are used to process spatio-temporal remote sensing images inorder to minimize computation cost differences and improve texture information. The findings are comparedqualitatively and qualitatively with the current state-of-art approaches. In addition, we saved about 43% of theGPU memory during training and accelerated the execution of our simplified version by eliminating batchnormalization layers.


翻译:单一图像超级分辨率( SISR) 生成高分辨率图像, 其空间分辨率优异, 由广度感知, 空间分辨率低。 最近, 深层次的学习和基因对抗网络( GANs) 在单一图像超分辨率( SISR) 的艰巨任务上取得了突破。 然而, 生成的图像仍然受到不受欢迎的手工艺的困扰, 例如没有纹理- 性能代表和高频信息。 我们提出一种基于频域基平流- 时间遥感图像超分辨率技术, 以重建HR图像, 结合不同频带( TWIST- GAN) 的基因对抗网络( GANs) 。 最近, 我们引入了一种新的方法, 包括Wavelet 变换( WT) 特性和基因对抗性对抗性对抗性对抗性对抗性网络( SISR) 。 LRA图像已经通过使用WT( 纹理- face- face) 变换基因网络高频组件。 最后, 将波形图象转换为以超分辨率保存图像的反向。 和超分辨率图解。 模型首先在远程的DIV2级的SAL- dalal- dalationalation 上训练, 并使用GDLADASet Sermax 数据转换为SDSDSDSDSDSDSDDSDSDSDSD 和校验。

0
下载
关闭预览

相关内容

最新《生成式对抗网络GAN时空数据应用》综述论文,28pdf
专知会员服务
60+阅读 · 2020年3月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
SRGAN论文笔记
统计学习与视觉计算组
109+阅读 · 2018年4月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
19+阅读 · 2021年1月14日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
SRGAN论文笔记
统计学习与视觉计算组
109+阅读 · 2018年4月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员