We study Milner's encoding of the call-by-value $\lambda$-calculus into the $\pi$-calculus. We show that, by tuning the encoding to two subcalculi of the $\pi$-calculus (Internal $\pi$ and Asynchronous Local $\pi$), the equivalence on $\lambda$-terms induced by the encoding coincides with Lassen's eager normalform bisimilarity, extended to handle $\eta$-equality. As behavioural equivalence in the $\pi$-calculus we consider contextual equivalence and barbed congruence. We also extend the results to preorders. A crucial technical ingredient in the proofs is the recently-introduced technique of unique solutions of equations, further developed in this paper. In this respect, the paper also intends to be an extended case study on the applicability and expressiveness of the technique.
翻译:我们研究Milner将美元-美元-美元计算法编码成美元-美元计算法。我们通过将编码调整为美元-美元计算法的两个子计算法(Internal $\ pi$和Asyncronous local $\ pi$),我们发现,由于编码而导致的美元-美元条件的等值与Lassen热切的正常形式两样性相吻合,并扩大到处理美元-美元平等。作为我们考虑的美元-计算法中的行为等值,我们还把结果扩大到了顺序前。证据中的一个关键技术成分是本文件中进一步发展的最近推出的方程独特解决办法技术。在这方面,本文还打算对技术的可适用性和表现性进行扩展案例研究。