We propose a novel approach for ASR N-best hypothesis rescoring with graph-based label propagation by leveraging cross-utterance acoustic similarity. In contrast to conventional neural language model (LM) based ASR rescoring/reranking models, our approach focuses on acoustic information and conducts the rescoring collaboratively among utterances, instead of individually. Experiments on the VCTK dataset demonstrate that our approach consistently improves ASR performance, as well as fairness across speaker groups with different accents. Our approach provides a low-cost solution for mitigating the majoritarian bias of ASR systems, without the need to train new domain- or accent-specific models.
翻译:我们提出了一种基于图形的标签传播的新方法来利用交叉语音相似性对ASR N个最佳假设进行重新评分。与传统的基于神经语言模型(LM)的ASR重新评分/重排模型不同,我们的方法专注于声学信息,并在不同的对话中协同地进行重新评分,而不是在每个对话中单独进行。在VCTK数据集上进行的实验表明,我们的方法始终可以提高ASR的性能,并且可以在具有不同口音的讲话者组之间提供公平性。我们的方法为解决ASR系统的大多数偏见提供了一种低成本的解决方案,无需训练新的特定领域或口音的模型。