We introduce Explearn, an online algorithm that learns to jointly output predictions and explanations for those predictions. Explearn leverages Gaussian Processes (GP)-based contextual bandits. This brings two key benefits. First, GPs naturally capture different kinds of explanations and enable the system designer to control how explanations generalize across the space by virtue of choosing a suitable kernel. Second, Explearn builds on recent results in contextual bandits which guarantee convergence with high probability. Our initial experiments hint at the promise of the approach.
翻译:我们引入了Explearn, 这是一种在线算法, 学会联合输出预测和解释这些预测。 Explearn 利用 Gaussian Processes (GP) 基于背景的土匪。 这带来了两大好处。 首先, GPs 自然地捕捉了不同解释, 使系统设计者能够通过选择合适的内核来控制整个空间的解释。 其次, Explearn 以背景土匪的最新结果为基础, 保证了高度概率的趋同。 我们最初的实验暗示着这个方法的希望 。