Artificial intelligence algorithms are increasingly adopted as decisional aides by public bodies, with the promise of overcoming biases of human decision-makers. At the same time, they may introduce new biases in the human-algorithm interaction. Drawing on psychology and public administration literatures, we investigate two key biases: overreliance on algorithmic advice even in the face of "warning signals" from other sources (automation bias), and selective adoption of algorithmic advice when this corresponds to stereotypes (selective adherence). We assess these via three experimental studies conducted in the Netherlands: In study 1 (N=605), we test automation bias by exploring participants' adherence to an algorithmic prediction compared to an equivalent human-expert prediction. We do not find evidence for automation bias. In study 2 (N=904), we replicate these findings, and also test selective adherence. We find a stronger propensity for adherence when the advice is aligned with group stereotypes, with no significant differences between algorithmic and human-expert advice. In study 3 (N=1,345), we replicate our design with a sample of civil servants. This study was conducted shortly after a major scandal involving public authorities' reliance on an algorithm with discriminatory outcomes (the "childcare benefits scandal"). The scandal is itself illustrative of our theory and patterns diagnosed empirically in our experiment, yet in our study 3, while supporting our prior findings as to automation bias, we do not find patterns of selective adherence. We suggest this is driven by bureaucrats' enhanced awareness of discrimination and algorithmic biases in the aftermath of the scandal. We discuss the implications of our findings for public sector decision-making in the age of automation.
翻译:公共机构越来越多地采用人工智能算法作为决策助手,并承诺克服人类决策者的偏见。同时,这些算法可能会在人与人之间的相互影响中引入新的偏见。根据心理学和公共行政文献,我们调查两大偏差:即使面对其他来源的“警告信号”也过度依赖算法建议(航空偏向),在符合陈规定型观念时有选择地采纳算法建议(选择性遵守)。我们通过在荷兰进行的三项实验性研究评估这些。我们在研究报告1(N=605)中,通过探索参与者是否坚持算法预测来测试自动化偏差,而与之相对应的是类似的人类-专家预测。我们没有找到自动化偏差的证据。在研究2 (N=904)中,我们复制了这些结论,并测试了选择性的坚持。我们发现,当建议与群体陈规定型观念相一致时,有选择性地采用算法建议,在算法与人专家建议之间没有重大差异。我们在研究3 (N=1 345)中,我们用公务员的样本复制了我们的设计。本项研究是在一项主要丑行的逻辑预测性预测之后不久进行的。我们从公共当局的选择性的判断性判断性判断性分析结果,而我们用前的理论分析则是我们的分析结果,我们的分析结果,我们的分析结果,我们没有分析。 我们的逻辑上的偏差分析。 我们的理论分析。 我们的理论的理论的理论分析,我们的分析结果本身的逻辑上的偏差。