This paper establishes directionality reinforcement learning (DRL) technique to propose the complete decentralized multi-agent reinforcement learning method which can achieve cooperation based on each agent's learning: no communication and no observation. Concretely, DRL adds the direction "agents have to learn to reach the farthest goal among reachable ones" to learning agents to operate the agents cooperatively. Furthermore, to investigate the effectiveness of the DRL, this paper compare Q-learning agent with DRL with previous learning agent in maze problems. Experimental results derive that (1) DRL performs better than the previous method in terms of the spending time, (2) the direction makes agents learn yielding action for others, and (3) DRL suggests achieving multiagent learning with few costs for any number of agents.


翻译:本文确定了方向强化学习(DRL)技术,以提出完整的分散式多剂强化学习方法,该方法可以在每个代理人的学习基础上实现合作:没有沟通,也没有观察。具体地说,DRL增加了一个方向,即“代理人必须学会达到最远的可达目标”,学习代理人以合作方式操作代理人。此外,为了调查DRL的有效性,本文件将Q学习剂与DRL和以前在迷宫问题上的学习剂进行了比较。实验结果显示:(1) DRL在花费时间方面表现优于以往的方法,(2)该方向使代理人学会为他人采取行动,(3) DRL建议实现多剂学习,而任何代理人的成本都不高。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
6+阅读 · 2021年6月24日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员