Nowadays, vision-based computing tasks play an important role in various real-world applications. However, many vision computing tasks, e.g. semantic segmentation, are usually computationally expensive, posing a challenge to the computing systems that are resource-constrained but require fast response speed. Therefore, it is valuable to develop accurate and real-time vision processing models that only require limited computational resources. To this end, we propose the Spatial-detail Guided Context Propagation Network (SGCPNet) for achieving real-time semantic segmentation. In SGCPNet, we propose the strategy of spatial-detail guided context propagation. It uses the spatial details of shallow layers to guide the propagation of the low-resolution global contexts, in which the lost spatial information can be effectively reconstructed. In this way, the need for maintaining high-resolution features along the network is freed, therefore largely improving the model efficiency. On the other hand, due to the effective reconstruction of spatial details, the segmentation accuracy can be still preserved. In the experiments, we validate the effectiveness and efficiency of the proposed SGCPNet model. On the Citysacpes dataset, for example, our SGCPNet achieves 69.5 % mIoU segmentation accuracy, while its speed reaches 178.5 FPS on 768x1536 images on a GeForce GTX 1080 Ti GPU card.


翻译:目前,基于视觉的计算任务在现实世界的各种应用中起着重要作用。然而,许多视觉计算任务,例如语义分割,通常计算成本昂贵,对资源受限制但需要快速反应速度的计算系统构成挑战,因此,开发精确和实时的视觉处理模型非常宝贵,只需要有限的计算资源。为此,我们提议建立空间脱尾引导背景促进网络(SGCPNet),以实现实时语义分离。在SGCPNet中,我们提出了空间脱尾引导背景传播战略。它利用浅层的空间细节来指导低分辨率全球环境的传播,在这种环境中,丢失的空间信息可以有效地重建。因此,在网络上保持高分辨率特性的必要性已经解放了,因此在很大程度上提高了模型效率。另一方面,由于空间细节的有效重建,分解准确性仍可以保持。在实验中,我们验证了拟议的SGCP网络模型模型的效能和效率。在Cellasacasacasion SIAVIC SIM5中, 其精确度为 SAFSER5 AS AS AS ASAL AS SAIC AS AS SAI SAIC SALATION SAL SAIC SAIC SAIC SAIC SAL SAIC SAIC SAL SAIC SAIC SAIC SAIC SAIC SAIC SAIC SAIC SAIC SAIC SALS SATI SATI SATI 5 SATI AL 。例例,我们 SATI SATI 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
31+阅读 · 2021年6月12日
面向健康的大数据与人工智能,103页ppt
专知会员服务
108+阅读 · 2020年12月29日
专知会员服务
32+阅读 · 2020年12月25日
最新《深度卷积神经网络理论》报告,35页ppt
专知会员服务
45+阅读 · 2020年11月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
7+阅读 · 2018年12月10日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
面向健康的大数据与人工智能,103页ppt
专知会员服务
108+阅读 · 2020年12月29日
专知会员服务
32+阅读 · 2020年12月25日
最新《深度卷积神经网络理论》报告,35页ppt
专知会员服务
45+阅读 · 2020年11月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员