Top-down instance segmentation methods improve mAP by hedging bets on low-confidence predictions to match a ground truth. Moreover, the query-key paradigm of top-down methods leads to the instance merging problem. An excessive number of duplicate predictions leads to the (over)counting error, and the independence of category and localization branches leads to the naming error. The de-facto mAP metric doesn't capture these errors, as we show that a trivial dithering scheme can simultaneously increase mAP with hedging errors. To this end, we propose two graph-based metrics that quantifies the amount of hedging both inter-and intra-class. We conjecture the source of the hedging problem is due to feature merging and propose a) Contrastive Flow Field to encode contextual differences between instances as a supervisory signal, and b) Semantic Sorting and NMS step to suppress duplicates and incorrectly categorized prediction. Ablations show that our method encodes contextual information better than baselines, and experiments on COCO our method simultaneously reduces merging and hedging errors compared to state-of-the-art instance segmentation methods.
翻译:从上到下分解的方法通过在低信任预测上套套用赌注来改善 mAP, 以匹配地面真相。 此外, 自上到下方法的查询式范式导致情况合并问题。 过多的重复预测会导致( 过度) 计算错误, 类别和本地化分支的独立性导致命名错误。 de-facto mAP 衡量标准没有捕捉这些错误, 因为我们显示一个微小的抖动方案可以同时用套用错误来增加 mAP 。 为此, 我们提出了两个基于图形的衡量标准, 用来量化对间和内部对冲数量。 我们推测套用对冲问题的来源是因为将一个特性合并并提出建议 ) 对比流动域来将各种情形之间的背景差异编成一个监督信号, (b) 语法排序和 NMS 步骤来抑制重复和分类错误的预测 。 缩略图显示, 我们的方法将背景信息编码比基线更好, 并实验CO 我们的方法同时减少与状态的分解方法的合并和套用错误 。