Intelligent reflecting surface (IRS), which consists of a large number of tunable reflective elements, is capable of enhancing the wireless propagation environment in a cellular network by intelligently reflecting the electromagnetic waves from the base-station (BS) toward the users. The optimal tuning of the phase shifters at the IRS is, however, a challenging problem, because due to the passive nature of reflective elements, it is difficult to directly measure the channels between the IRS, the BS, and the users. Instead of following the traditional paradigm of first estimating the channels then optimizing the system parameters, this paper advocates a machine learning approach capable of directly optimizing both the beamformers at the BS and the reflective coefficients at the IRS based on a system objective. This is achieved by using a deep neural network to parameterize the mapping from the received pilots (plus any additional information, such as the user locations) to an optimized system configuration, and by adopting a permutation invariant/equivariant graph neural network (GNN) architecture to capture the interactions among the different users in the cellular network. Simulation results show that the proposed implicit channel estimation based approach is generalizable, can be interpreted, and can efficiently learn to maximize a sum-rate or minimum-rate objective from a much fewer number of pilots than the traditional explicit channel estimation based approaches.


翻译:由大量金枪鱼可反射元素组成的智能反射表面(IRS),能够通过智能地向用户反映基地站(BS)的电磁波,加强蜂窝网络中的无线传播环境。然而,对IRS的相向转换器进行最佳调整是一个具有挑战性的问题,因为反射元素的被动性质,很难直接测量IRS、BS和用户之间的渠道。本文不遵循首先估计频道然后优化系统参数的传统模式,而是倡导一种机器学习方法,能够直接优化BS的光束和基于系统目标的IRS反射系数。通过使用深神经网络,将从收到的试点(加上任何额外信息,例如用户位置)到优化的系统配置的绘图参数进行参数调整,以及采用变化/等差异性图形神经网络(GNN)结构,来捕捉细胞网络不同用户之间的相互作用。模拟结果显示,基于系统网络的、基于最起码水平水平的频道估算方法,能够从一个最起码的、最起码的、最起码的、最起码的、以最起码的渠道估算方法,能够从一个最起码的、最起码的、以最起码的、最起码的、最起码的、最起码的、最精确的渠道估算方法来学习、最起码的、最起码的、最起码的、最起码的、最精确的、最精确的、最精确的渠道估计方法。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员