Data augmentation has been widely used to improve deep nerual networks performance. Numerous approaches are suggested, for example, dropout, regularization and image augmentation, to avoid over-ftting and enhancing generalization of neural networks. One of the sub-area within data augmentation is image mixing and deleting. This specific type of augmentation either mixes two images or delete image regions to hide or make certain characteristics of images confusing for the network to force it to emphasize on overall structure of object in image. The model trained with this approach has shown to perform and generalize well as compared to one trained without imgage mixing or deleting. Additional benefit achieved with this method of training is robustness against image corruptions. Due to its low compute cost and success in recent past, many techniques of image mixing and deleting are proposed. This paper provides detailed review on these devised approaches, dividing augmentation strategies in three main categories cut and delete, cut and mix and mixup. The second part of paper emprically evaluates these approaches for image classification, finegrained image recognition and object detection where it is shown that this category of data augmentation improves the overall performance for deep neural networks.


翻译:数据增强已被广泛用于改善深层神经网络的性能,例如,提出了许多方法,例如,辍学、正规化和图像增强,以避免过度盗窃和加强神经网络的普遍化,数据增强中的一个子领域是图像混合和删除。这种特定的增强类型混合了两个图像或删除图像区域,使网络隐藏或使图像的某些特征混淆起来,迫使网络强调图像的整体结构。经过培训的模型显示,与受过培训的不混杂或删除的模型相比,能够进行和普及以及比较这些方法。通过这种培训获得的额外好处是稳健地防止图像腐败。由于这种培训方法的成本低,而且最近取得了成功,因此提出了许多图像混合和删除技术。本文详细审查了这些设计的方法,将增强战略分为三大类,切割、删除、切割、混合和混合。文件第二部分对图像分类、微细微图像识别和对象探测方法进行了评价,其中显示,这类数据增强方法改善了深神经网络的总体性能。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Data Augmentation for Text Classification
Arxiv
38+阅读 · 2020年12月2日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员