Deep learning approaches deliver state-of-the-art performance in recognition of spatiotemporal human motion data. However, one of the main challenges in these recognition tasks is limited available training data. Insufficient training data results in over-fitting and data augmentation is one approach to address this challenge. Existing data augmentation strategies, such as transformations including scaling, shifting and interpolating, require hyperparameter optimization that can easily cost hundreds of GPU hours. In this paper, we present a novel automatic data augmentation model, the Imaginative Generative Adversarial Network (GAN) that approximates the distribution of the input data and samples new data from this distribution. It is automatic in that it requires no data inspection and little hyperparameter tuning and therefore it is a low-cost and low-effort approach to generate synthetic data. The proposed data augmentation strategy is fast to train and the synthetic data leads to higher recognition accuracy than using data augmented with a classical approach.
翻译:深度学习方法在承认时空人类运动数据方面提供最先进的业绩。然而,这些识别任务的主要挑战之一是现有培训数据有限。培训数据不足导致过度装配和数据增加,这是应对这一挑战的一种方法。现有的数据增强战略,如包括缩放、移动和内插在内的转换,需要超参数优化,这可以很容易地花费数百个GPU小时。在本文中,我们提出了一个新型自动数据增强模型,即想象式基因对流网络(GAN),它接近输入数据的分布和从这种分布中提取新数据的样本。它自动出现,因为它不需要数据检查和微小的超参数调整,因此是一种低成本和低效的合成数据生成方法。拟议的数据增强战略是快速培训的,合成数据导致更高的识别准确性,而不是使用古典方法增强的数据。