Natural Language Processing and Machine Learning have considerably advanced Computational Literary Studies. Similarly, the construction of co-occurrence networks of literary characters, and their analysis using methods from social network analysis and network science, have provided insights into the micro- and macro-level structure of literary texts. Combining these perspectives, in this work we study character networks extracted from a text corpus of J.R.R. Tolkien's Legendarium. We show that this perspective helps us to analyse and visualise the narrative style that characterises Tolkien's works. Addressing character classification, embedding and co-occurrence prediction, we further investigate the advantages of state-of-the-art Graph Neural Networks over a popular word embedding method. Our results highlight the large potential of graph learning in Computational Literary Studies.
翻译:自然语言处理和机器学习已大大推进了计算文学研究。同样,文学字符共同网络的建设及其利用社会网络分析和网络科学方法的分析,为文学文本的微观和宏观结构提供了深刻的见解。结合这些观点,我们在这项工作中研究从J.R.R.R.Tolkien的传奇馆文集中提取的字符网络。我们表明,这一视角有助于我们分析和直观Tolkien作品的描述风格。我们探讨了字符分类、嵌入和共发预测,我们进一步调查了最先进的图案神经网络相对于流行的词嵌入方法的优势。我们的结果突出表明了在比较文学研究中图表学习的巨大潜力。