The theory of discrete-time reinforcement learning (RL) has advanced rapidly over the past decades. Although primarily designed for discrete environments, many real-world RL applications are inherently continuous and complex. A major challenge in extending discrete-time algorithms to continuous-time settings is their sensitivity to time discretization, often leading to poor stability and slow convergence. In this paper, we investigate deterministic policy gradient methods for continuous-time RL. We derive a continuous-time policy gradient formula based on an analogue of the advantage function and establish its martingale characterization. This theoretical foundation leads to our proposed algorithm, CT-DDPG, which enables stable learning with deterministic policies in continuous-time environments. Numerical experiments show that the proposed CT-DDPG algorithm offers improved stability and faster convergence compared to existing discrete-time and continuous-time methods, across a wide range of control tasks with varying time discretizations and noise levels.
翻译:暂无翻译