Multi-modal multi-objective optimization problems (MMMOPs) have multiple subsets within the Pareto-optimal Set, each independently mapping to the same Pareto-Front. Prevalent multi-objective evolutionary algorithms are not purely designed to search for multiple solution subsets, whereas, algorithms designed for MMMOPs demonstrate degraded performance in the objective space. This motivates the design of better algorithms for addressing MMMOPs. The present work identifies the crowding illusion problem originating from using crowding distance globally over the entire decision space. Subsequently, an evolutionary framework, called graph Laplacian based Optimization using Reference vector assisted Decomposition (LORD), is proposed, which uses decomposition in both objective and decision space for dealing with MMMOPs. Its filtering step is further extended to present LORD-II algorithm, which demonstrates its dynamics on multi-modal many-objective problems. The efficacies of the frameworks are established by comparing their performance on test instances from the CEC 2019 multi-modal multi-objective test suite and polygon problems with the state-of-the-art algorithms for MMMOPs and other multi- and many-objective evolutionary algorithms. The manuscript is concluded by mentioning the limitations of the proposed frameworks and future directions to design still better algorithms for MMMOPs. The source code is available at https://worksupplements.droppages.com/lord.


翻译:多式多目标优化问题(MMMOPs)在Pareto-optimal Set(Pareto-optimal Set)中包含多个子集,每个子集都独立地绘制到同一个Pareto-Front 。 Pretarent 多重目标进化算法并非纯粹为了寻找多个解决方案子集而设计的,而为 MMMOPs设计的算法显示在客观空间的性能退化。这促使设计更好的算法来解决MMMMOs问题。目前的工作查明了使用全球范围挤压决定空间产生的众目幻觉问题。随后,提出了一个进化框架,称为图形 Laplacian 的优化,使用参考矢量矢量辅助拆解(LORD) 。 提议在目标和决策空间中使用分解空间来与 MMMOPs 打交道。 它的过滤步骤进一步扩展为当前的 耶和華-II 算法,它显示了在多式多目标问题上的动态。 框架的精度通过比较其现有CEC 2019多式多式测试实例的测试套和多式混合测试套套和多式优化优化优化优化优化优化优化优化优化优化优化优化组合组合组合和多式套和多式算法框架的测试问题。MMOPRODLMUPLMUDLMUDLMALs 将改进了MU的更好设计方向。MVD- dalmas 。MUDals 将MLisquerals 的更进算法在MLMLisqueslisquesldaldald 。MLMLisldaldaldald 。MLMLMLMLisques 和MLisquedaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldals

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员