Multi-modal multi-objective optimization problems (MMMOPs) have multiple subsets within the Pareto-optimal Set, each independently mapping to the same Pareto-Front. Prevalent multi-objective evolutionary algorithms are not purely designed to search for multiple solution subsets, whereas, algorithms designed for MMMOPs demonstrate degraded performance in the objective space. This motivates the design of better algorithms for addressing MMMOPs. The present work identifies the crowding illusion problem originating from using crowding distance globally over the entire decision space. Subsequently, an evolutionary framework, called graph Laplacian based Optimization using Reference vector assisted Decomposition (LORD), is proposed, which uses decomposition in both objective and decision space for dealing with MMMOPs. Its filtering step is further extended to present LORD-II algorithm, which demonstrates its dynamics on multi-modal many-objective problems. The efficacies of the frameworks are established by comparing their performance on test instances from the CEC 2019 multi-modal multi-objective test suite and polygon problems with the state-of-the-art algorithms for MMMOPs and other multi- and many-objective evolutionary algorithms. The manuscript is concluded by mentioning the limitations of the proposed frameworks and future directions to design still better algorithms for MMMOPs. The source code is available at https://worksupplements.droppages.com/lord.
翻译:多式多目标优化问题(MMMOPs)在Pareto-optimal Set(Pareto-optimal Set)中包含多个子集,每个子集都独立地绘制到同一个Pareto-Front 。 Pretarent 多重目标进化算法并非纯粹为了寻找多个解决方案子集而设计的,而为 MMMOPs设计的算法显示在客观空间的性能退化。这促使设计更好的算法来解决MMMMOs问题。目前的工作查明了使用全球范围挤压决定空间产生的众目幻觉问题。随后,提出了一个进化框架,称为图形 Laplacian 的优化,使用参考矢量矢量辅助拆解(LORD) 。 提议在目标和决策空间中使用分解空间来与 MMMOPs 打交道。 它的过滤步骤进一步扩展为当前的 耶和華-II 算法,它显示了在多式多目标问题上的动态。 框架的精度通过比较其现有CEC 2019多式多式测试实例的测试套和多式混合测试套套和多式优化优化优化优化优化优化优化优化优化优化优化优化组合组合组合和多式套和多式算法框架的测试问题。MMOPRODLMUPLMUDLMUDLMALs 将改进了MU的更好设计方向。MVD- dalmas 。MUDals 将MLisquerals 的更进算法在MLMLisqueslisquesldaldald 。MLMLisldaldaldald 。MLMLMLMLisques 和MLisquedaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldals