Increasing and massive volumes of trajectory data are being accumulated that may serve a variety of applications, such as mining popular routes or identifying ridesharing candidates. As storing and querying massive trajectory data is costly, trajectory simplification techniques have been introduced that intuitively aim to reduce the sizes of trajectories, thus reducing storage and speeding up querying, while preserving as much information as possible. Existing techniques rely mainly on hand-crafted error measures when deciding which point to drop when simplifying a trajectory. While the hope may be that such simplification affects the subsequent usability of the data only minimally, the usability of the simplified data remains largely unexplored. Instead of using error measures that indirectly may to some extent yield simplified trajectories with high usability, we adopt a direct approach to simplification and present the first study of query accuracy driven trajectory simplification, where the direct objective is to achieve a simplified trajectory database that preserves the query accuracy of the original database as much as possible. Specifically, we propose a multi-agent reinforcement learning based solution with two agents working cooperatively to collectively simplify trajectories in a database while optimizing query usability. Extensive experiments on four real-world trajectory datasets show that the solution is capable of consistently outperforming baseline solutions over various query types and dynamics.
翻译:暂无翻译