We present three families of minimal border rank tensors: they come from highest weight vectors, smoothable algebras, or monomial algebras. We analyse them using Strassen's laser method and obtain an upper bound $2.431$ on $\omega$. We also explain how in certain monomial cases using the laser method directly is less profitable than first degenerating. Our results form possible paths in the search for valuable tensors for the laser method away from Coppersmith-Winograd tensors.
翻译:我们提出三组最低边界级数:它们来自最高重量矢量、可滑动代数或单分子代数。我们使用斯特拉斯森的激光法分析它们,并以美元/日美加元获得最高约束值2.431美元。我们还解释了在某些单一情况下,使用激光法的直接利润比首次降解要低。我们的结果为在远离铜匠-威诺格勒激光器的激光法中寻找有价值的抗拉提供了可能的路径。