In this paper, we study the parallel simulation of the magnetohydrodynamic (MHD) dynamo in a rapidly rotating spherical shell with pseudo-vacuum magnetic boundary conditions. A second-order finite volume scheme based on a collocated quasi-uniform cubed-sphere grid is applied to the spatial discretization of the MHD dynamo equations. To ensure the solenoidal condition of the magnetic field, we adopt a widely-used approach whereby a pseudo-pressure is introduced into the induction equation. The temporal integration is split by a second-order approximate factorization approach, resulting in two linear algebraic systems both solved by a preconditioned Krylov subspace iterative method. A multi-level restricted additive Schwarz preconditioner based on domain decomposition and multigrid method is then designed to improve the efficiency and scalability. Accurate numerical solutions of two benchmark cases are obtained with our code, comparable to the existing local method results. Several large-scale tests performed on the Sunway TaihuLight supercomputer show good strong and weak scalabilities and a noticeable improvement from the multi-level preconditioner with up to 10368 processor cores.
翻译:在本文中,我们研究磁流动力学(MHD)动力动力学(MHD)动力学(MHD)动态的平行模拟,用假真空磁边界条件快速旋转球状外壳进行模拟。基于合用准单式立方体阵列网格的二级有限体积方案适用于MHD 振动式方程式的空间离散化。为了确保磁场的独流性状态,我们采用了一种广泛使用的方法,将伪压力引入感应方程式。时间整合被二阶近似因子化法分割开来,结果产生了两个线性代数系统,两个线性代数系统都是通过一个有先决条件的Krylov 子空间迭接法解决的。然后设计了一种基于域分解和多格方法的多级限制添加Schwarz先决条件,以提高效率和伸缩性。用我们的代码获得两个基准案例的精确数字解决办法,与现有的当地方法结果相当。在Sunway TaihuLight超级计算机上进行的几次大规模试验显示强弱的伸缩性,并且从一个有10368进程核心的多级先决条件中可以明显改进。