Event cameras are a new type of sensors that are different from traditional cameras. Each pixel is triggered asynchronously by event. The trigger event is the change of the brightness irradiated on the pixel. If the increment or decrement of brightness is higher than a certain threshold, an event is output. Compared with traditional cameras, event cameras have the advantages of high dynamic range and no motion blur. Accumulating events to frames and using traditional SLAM algorithm is a direct and efficient way for event-based SLAM. Different event accumulator settings, such as slice method of event stream, processing method for no motion, using polarity or not, decay function and event contribution, can cause quite different accumulating results. We conducted the research on how to accumulate event frames to achieve a better event-based SLAM performance. For experiment verification, accumulated event frames are fed to the traditional SLAM system to construct an event-based SLAM system. Our strategy of setting event accumulator has been evaluated on the public dataset. The experiment results show that our method can achieve better performance in most sequences compared with the state-of-the-art event frame based SLAM algorithm. In addition, the proposed approach has been tested on a quadrotor UAV to show the potential of applications in real scenario. Code and results are open sourced to benefit the research community of event cameras
翻译:事件摄像头是一种不同于传统相机的新型事件感应器。 每个像素会因事件而自动触发。 触发事件是闪光在像素上被辐照的亮度的改变。 如果亮度的增量或衰减高于某一阈值, 事件就是输出。 与传统相机相比, 事件摄像头的优点是动态范围大, 没有运动模糊。 将事件累积到框架和使用传统的 SLAM 算法是事件基础的直接而有效的方法。 不同的事件累积器设置, 如事件流切片法、 使用极分或非极分处理不运动的方法、 衰变函数和事件贡献等, 可能会产生完全不同的累积结果。 我们研究了如何积累事件框架, 以更好地实现基于事件的业绩。 为了实验核查, 累积事件框架被输入传统的 SLAM 系统, 以构建一个以事件为基础的 SLAM 系统系统。 我们在公共数据集中评估了我们设定事件的公开累积器的战略。 实验结果表明, 我们的方法可以在大多数序列中实现更好的性表现, 与SLAFM 的系统模型模型模型中, 测试了对事件预测的系统的模型的系统。