In sparse large-scale testing problems where the false discovery proportion (FDP) is highly variable, the false discovery exceedance (FDX) provides a valuable alternative to the widely used false discovery rate (FDR). We develop an empirical Bayes approach to controlling the FDX. We show that for independent hypotheses from a two-group model and dependent hypotheses from a Gaussian model fulfilling the exchangeability condition, an oracle decision rule based on ranking and thresholding the local false discovery rate (lfdr) is optimal in the sense that the power is maximized subject to FDX constraint. We propose a data-driven FDX procedure that emulates the oracle via carefully designed computational shortcuts. We investigate the empirical performance of the proposed method using simulations and illustrate the merits of FDX control through an application for identifying abnormal stock trading strategies.


翻译:假发现比例(FDP)变化很大,虚假发现超额(FDX)为广泛使用的虚假发现率(FDR)提供了宝贵的替代方法。我们开发了一种经验型海湾控制FDX的方法。我们证明,对于两组模式的独立假设和高斯模式符合可兑换性条件的依附假设,基于当地虚假发现率(lfdr)的等级和门槛的甲骨文决定规则是最佳的,因为受FDX限制,权力最大化。我们提议了一个数据驱动的FDX程序,通过精心设计的计算快捷方式仿照甲骨。我们用模拟方法调查了拟议方法的经验表现,并通过应用查明异常股票交易战略来说明FDX控制的好处。

0
下载
关闭预览

相关内容

【CVPR2021】细粒度多标签分类
专知会员服务
60+阅读 · 2021年3月8日
专知会员服务
50+阅读 · 2020年12月14日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年10月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月10日
Arxiv
0+阅读 · 2022年1月9日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
0+阅读 · 2022年1月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年10月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员