Bosonic channels describe quantum-mechanically many practical communication links such as optical, microwave, and radiofrequency. We investigate the maximum rates for the bosonic multiple access channel (MAC) in the presence of thermal noise added by the environment and when the transmitters utilize Gaussian state inputs. We develop an outer bound for the capacity region for the thermal-noise lossy bosonic MAC. We additionally find that the use of coherent states at the transmitters is capacity-achieving in the limits of high and low mean input photon numbers. Furthermore, we verify that coherent states are capacity-achieving for the sum rate of the channel. In the non-asymptotic regime, when a global mean photon-number constraint is imposed on the transmitters, coherent states are the optimal Gaussian state. Surprisingly however, the use of single-mode squeezed states can increase the capacity over that afforded by coherent state encoding when each transmitter is photon number constrained individually.
翻译:博索尼氏频道描述量子-机械性的许多实际通信联系,例如光学、微波和射频。我们调查在环境中加热噪音的情况下和当发射机使用高斯国家投入时,波苏尼多进入频道(MAC)的最大速度。我们为热噪音损失博苏尼MAC的能力区域开发了一个外部线。我们还发现,在发射机上使用一致的状态是在高低平均输入光子数字的限度内实现能力。此外,我们还核实,一致的国家是达到该频道总和速度的能力。在非简单制度下,当对发射机施加全球平均光量限制时,一致的国家是最佳高斯状态。但令人惊讶的是,单式挤压状态的使用可以提高每个发射机单独受光量限制时通过一致的状态编码提供的能力。