Deep Neural Networks (DNNs) could be easily fooled by Adversarial Examples (AEs) with the imperceptible difference to original samples in human eyes. To keep the difference imperceptible, the existing attacking bound the adversarial perturbations by the $\ell_\infty$ norm, which is then served as the standard to align different attacks for a fair comparison. However, when investigating attack transferability, i.e., the capability of the AEs from attacking one surrogate DNN to cheat other black-box DNN, we find that only using the $\ell_\infty$ norm is not sufficient to measure the attack strength, according to our comprehensive experiments concerning 7 transfer-based attacks, 4 white-box surrogate models, and 9 black-box victim models. Specifically, we find that the $\ell_2$ norm greatly affects the transferability in $\ell_\infty$ attacks. Since larger-perturbed AEs naturally bring about better transferability, we advocate that the strength of all attacks should be measured by both the widely used $\ell_\infty$ and also the $\ell_2$ norm. Despite the intuitiveness of our conclusion and advocacy, they are very necessary for the community, because common evaluations (bounding only the $\ell_\infty$ norm) allow tricky enhancements of the "attack transferability" by increasing the "attack strength" ($\ell_2$ norm) as shown by our simple counter-example method, and the good transferability of several existing methods may be due to their large $\ell_2$ distances.


翻译:深神经网络(DNNS) 很容易被 Aversarial Internets (DNNS) 所欺骗, 与人类眼中的原始样本相比, 无法辨别差异。 要保持这种差异, 根据我们对7次转移式袭击、 4个白箱套件模型和9个黑箱受害者模型的全面实验, 现有的攻击将约束对立性, 从而作为调和不同攻击以公平比较的标准。 但是, 在调查攻击可转移性时, 即 AE( AE) 袭击一个替代的 DNNN( AE) 以欺骗其他黑盒 DNNN( DNN) 的能力时, 我们发现, 只有使用 $\ intrefty$ 标准不足以衡量攻击的强度。 根据我们对7次转移式袭击、 4个白箱套件套件套件套件套件套件和9个黑箱受害者模型的全面实验, 我们发现, $2 值标准对攻击的可转移性有很大影响 $ 。 。 由于更深的AE 自然会带来更好的可转移性, 我们主张所有攻击的强度, 所有攻击的强度的强度的强度应该由广泛使用的 美元 以 美元 正在使用的正统值标准 美元来测量的递增 。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
专知会员服务
44+阅读 · 2020年10月31日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月20日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
12+阅读 · 2020年12月10日
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年10月20日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
12+阅读 · 2020年12月10日
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
Top
微信扫码咨询专知VIP会员