Recent breakthroughs in high-resolution imaging of biomolecules in solution with cryo-electron microscopy (cryo-EM) have unlocked new doors for the reconstruction of molecular volumes, thereby promising further advances in biology, chemistry, and pharmacological research. Recent next-generation volume reconstruction algorithms that combine generative modeling with end-to-end unsupervised deep learning techniques have shown promising preliminary results, but still face considerable technical and theoretical hurdles when applied to experimental cryo-EM images. In light of the proliferation of such methods, we propose here a critical review of recent advances in the field of deep generative modeling for cryo-EM volume reconstruction. The present review aims to (i) unify and compare these new methods using a consistent statistical framework, (ii) present them using a terminology familiar to machine learning researchers and computational biologists with no specific background in cryo-EM, and (iii) provide the necessary perspective on current advances to highlight their relative strengths and weaknesses, along with outstanding bottlenecks and avenues for improvements in the field. This review might also raise the interest of computer vision practitioners, as it highlights significant limits of deep generative models in low signal-to-noise regimes -- therefore emphasizing a need for new theoretical and methodological developments.
翻译:最近在高分辨率生物分子成像中突破了高分辨率生物分子成像,溶解了冷冻电子显微镜(cryo-EM),从而打开了重建分子数量的新门,从而有望在生物学、化学和药理学研究方面取得进一步进展。最近新一代的体积重建算法,将基因模型与终至终的未经监督的深层学习技术相结合,这些算法显示了有希望的初步结果,但在应用实验性冷冻微粒图像时,仍然面临着相当大的技术和理论障碍。鉴于这些方法的扩散,我们在此提议对在为冷冻微量的重建而进行深层基因化建模领域的最新进展进行一次批判性审查。本审查的目的是:(一) 使用一致的统计框架,统一和比较这些新方法,(二) 提出它们使用一种熟悉机器学习研究人员和计算生物学家的术语,在冷冻微粒中没有具体背景,(三) 提供关于当前进展的必要观点,以突出其相对的长处和弱点,以及外地的突出的瓶颈和改进途径。本审查还可能提高计算机从业者的兴趣,因为这一角度强调低基因分析模型模型发展的重大限度。