The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids. A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids. We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes. We first develop a methodology to generate a synthetic dataset based on paraboloid surfaces discretized on unstructured meshes. We then train a GNN based model and perform generalization tests. Our results demonstrate the efficiency of a GNN based approach for interface reconstruction in multi-phase flow simulations in the industrial context.
翻译:在多阶段流动模拟中广泛使用液体(VoF)的体积方法,以跟踪和定位两种不相容液体之间的界面。VoF方法的一个主要瓶颈是界面重建步骤,因为其计算成本高,而且非结构化电网的精确度低。我们提议以图形神经网络(GNN)为基础的机器学习增强VoF方法,以加速一般非结构化网目上的界面重建。我们首先开发了一种方法,以分离于非结构化网目上的类固醇表面为基础,生成一个合成数据集。我们随后培训了一个以GNN为基础的模型,并进行一般性测试。我们的结果表明,基于GNN在工业环境中多阶段流模拟中界面重建的GNN方法是有效的。