We propose, analyze, and test new robust iterative solvers for systems of linear algebraic equations arising from the space-time finite element discretization of reduced optimality systems defining the approximate solution of hyperbolic distributed, tracking-type optimal control problems with both the standard $L^2$ and the more general energy regularizations. In contrast to the usual time-stepping approach, we discretize the optimality system by space-time continuous piecewise-linear finite element basis functions which are defined on fully unstructured simplicial meshes. If we aim at the asymptotically best approximation of the given desired state $y_d$ by the computed finite element state $y_{\varrho h}$, then the optimal choice of the regularization parameter $\varrho$ is linked to the space-time finite element mesh-size $h$ by the relations $\varrho=h^4$ and $\varrho=h^2$ for the $L^2$ and the energy regularization, respectively. For this setting, we can construct robust (parallel) iterative solvers for the reduced finite element optimality systems. These results can be generalized to variable regularization parameters adapted to the local behavior of the mesh-size that can heavily change in the case of adaptive mesh refinements. The numerical results illustrate the theoretical findings firmly.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月27日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员