Transporting suspended payloads is challenging for autonomous aerial vehicles because the payload can cause significant and unpredictable changes to the robot's dynamics. These changes can lead to suboptimal flight performance or even catastrophic failure. Although adaptive control and learning-based methods can in principle adapt to changes in these hybrid robot-payload systems, rapid mid-flight adaptation to payloads that have a priori unknown physical properties remains an open problem. We propose a meta-learning approach that "learns how to learn" models of altered dynamics within seconds of post-connection flight data. Our experiments demonstrate that our online adaptation approach outperforms non-adaptive methods on a series of challenging suspended payload transportation tasks. Videos and other supplemental material are available on our website: https://sites.google.com/view/meta-rl-for-flight
翻译:对自主飞行器而言,由于有效载荷可导致机器人动态发生重大和不可预测的变化,因此暂停运输的有效载荷具有挑战性,因为有效载荷对自主飞行器具有挑战性,因为有效载荷可导致机器人动态发生重大和不可预测的变化。这些变化可能导致飞行性能低于最佳水平,甚至灾难性失败。虽然适应控制和学习方法原则上可以适应这些混合机器人-有效载荷系统的变化,但对具有先天未知物理特性的有效载荷的快速中空调整仍然是一个尚未解决的问题。我们提议采用元学习方法,在连接后飞行数据数秒内“学习如何学习”改变的动态模型。我们的实验表明,我们的在线适应方法在一系列具有挑战性的暂停有效载荷运输任务方面,优于非适应性方法。视频和其他补充材料可在我们的网站上查阅:https://sites.google.com/view/meta-rl-for-level。