In the past decade, model-free reinforcement learning (RL) has provided solutions to challenging domains such as robotics. Model-based RL shows the prospect of being more sample-efficient than model-free methods in terms of agent-environment interactions, because the model enables to extrapolate to unseen situations. In the more recent past, model-based methods have shown superior results compared to model-free methods in some challenging domains with non-linear state transitions. At the same time, it has become apparent that RL is not market-ready yet and that many real-world applications are going to require model-based approaches, because model-free methods are too sample-inefficient and show poor performance in early stages of training. The latter is particularly important in industry, e.g. in production systems that directly impact a company's revenue. This demonstrates the necessity for a toolbox to push the boundaries for model-based RL. While there is a plethora of toolboxes for model-free RL, model-based RL has received little attention in terms of toolbox development. Bellman aims to fill this gap and introduces the first thoroughly designed and tested model-based RL toolbox using state-of-the-art software engineering practices. Our modular approach enables to combine a wide range of environment models with generic model-based agent classes that recover state-of-the-art algorithms. We also provide an experiment harness to compare both model-free and model-based agents in a systematic fashion w.r.t. user-defined evaluation metrics (e.g. cumulative reward). This paves the way for new research directions, e.g. investigating uncertainty-aware environment models that are not necessarily neural-network-based, or developing algorithms to solve industrially-motivated benchmarks that share characteristics with real-world problems.
翻译:在过去十年中,无模式强化学习(RL)为机器人等具有挑战性的领域提供了解决方案。基于模型的RL展示了在代理-环境互动方面比无模式的方法学更具抽样效率的前景,因为模型能够推断出不可见的情况。在较近的过去,在非线性国家转型的一些具有挑战性的领域,基于模型的方法比无模式的强化学习(RL)显示了优于无模式方法的结果。与此同时,显而易见的是,基于模型的RL还没有做好市场准备,而且许多真实世界应用将需要采取基于模型的方法,因为无模式的内行方法效率过强,在早期培训阶段显示无模式的内行方法差。后者在工业中特别重要,例如直接影响公司收入的生产系统。这表明有必要建立一个工具箱,以推高基于模型、基于模型的RL、基于模型的RL等工具箱,在工具箱开发方面很少受到注意。贝尔曼的目的是填补这一空白,并在模型-内引入了第一个彻底设计和测试的模型-系统化的系统化的系统化的系统化工具箱评估方法,从而将一个基于我们模型的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化模型-系统化的系统化的系统化的系统化的系统化的系统化模型-系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的