The quantification of wave loading on offshore structures and components is a crucial element in the assessment of their useful remaining life. In many applications the well-known Morison's equation is employed to estimate the forcing from waves with assumed particle velocities and accelerations. This paper develops a grey-box modelling approach to improve the predictions of the force on structural members. A grey-box model intends to exploit the enhanced predictive capabilities of data-based modelling whilst retaining physical insight into the behaviour of the system; in the context of the work carried out here, this can be considered as physics-informed machine learning. There are a number of possible approaches to establish a grey-box model. This paper demonstrates two means of combining physics (white box) and data-based (black box) components; one where the model is a simple summation of the two components, the second where the white-box prediction is fed into the black box as an additional input. Here Morison's equation is used as the physics-based component in combination with a data-based Gaussian process NARX - a dynamic variant of the more well-known Gaussian process regression. Two key challenges with employing the GP-NARX formulation that are addressed here are the selection of appropriate lag terms and the proper treatment of uncertainty propagation within the dynamic GP. The best performing grey-box model, the residual modelling GP-NARX, was able to achieve a 29.13\% and 5.48\% relative reduction in NMSE over Morison's Equation and a black-box GP-NARX respectively, alongside significant benefits in extrapolative capabilities of the model, in circumstances of low dataset coverage.
翻译:离岸结构和部件的波装量量化是评估其有用剩余寿命的一个关键要素。 在许多应用中, 众所周知的莫里森方程式被用于估算由假定粒子速度和加速度产生的波浪压力。 本文开发了一个灰盒建模方法, 以改进结构成员对力量的预测。 灰盒模型旨在利用基于数据的建模增强的预测能力, 同时保留对系统行为的实际洞察力; 在此开展的工作中, 这可被视为物理知情的机器学习。 有多种可能的方法可以建立灰盒模型。 本文展示了将物理(白盒)和基于数据(黑盒)的元件组合起来的两种手段; 其中一种模型是简单的对结构成员力量的预测; 另一种是将白盒预测输入黑盒作为附加投入。 这里, 摩里森方的方程式用作基于物理的模型组成部分, 与基于数据的GARC的外加码过程。 有多种可能的变式变式模型, 高巴- 亚- 亚基- 亚基- 基- 基质模型的变变后, 进行正确的变式的变压。 两种主要的挑战是E- NARVA, 在正确的变变法中, 正确的变法中, 进行适当的变法 的变法 的变法 的变法 的变法 的变法 。 在适当的变法 的变法 的变法 的变法 的变法 。 的变法 的变法 的变法 。