We present two active learning algorithms for sound deterministic negotiations. Sound deterministic negotiations are models of distributed systems, a kind of Petri nets or Zielonka automata with additional structure. We show that this additional structure allows to minimize such negotiations. The two active learning algorithms differ in the type of membership queries they use. Both have similar complexity to Angluin's L* algorithm, in particular, the number of queries is polynomial in the size of the negotiation, and not in the number of configurations.
翻译:我们为稳妥的确定性谈判提出了两种积极的学习算法。 稳妥的确定性谈判是分布式系统的模式,一种是Petri 网或具有额外结构的Zielonka 自动模型。 我们表明,这种额外的结构可以最大限度地减少这种谈判。 两种积极的学习算法在成员询问类型上有所不同。 这两种方法都与安格鲁因的L* 算法相似复杂,特别是,在谈判规模上查询的数量是多等的,而不是组合的数量。