In spite of the recent success of deep learning in the medical domain, the problem of data scarcity in the medical domain gets aggravated due to privacy and data ownership issues. Distributed learning approaches including federated learning have been studied to alleviate the problems, but they suffer from cumbersome communication overheads and weakness in privacy protection. To address this, here we propose a self-supervised masked sampling distillation method for vision transformer that can be performed without continuous communication but still enhance privacy using a vision transformer-specific encryption method. The effectiveness of our method is demonstrated with extensive experiments on two medical domain data and two different downstream tasks, showing superior performances than those obtained with the existing distributed learning strategy as well as the fine-tuning only baseline. As the self-supervised model built with the proposed method is capable of having a general semantic understanding of the modality, we demonstrate its potential as a task-agnostic foundation model for various medical tasks, widening the applicability in the medical domain.


翻译:尽管最近医学领域深层学习取得了成功,但由于隐私和数据所有权问题,医疗领域数据稀缺的问题因隐私和数据所有权问题而更加严重。已经研究了包括联合学习在内的分散学习方法,以缓解问题,但是它们受到繁琐的通信间接费用和隐私保护方面的弱点的影响。为了解决这个问题,我们在这里提议为视觉变压器采用自我监督的蒙面采样法,在没有连续通信的情况下可以进行,但仍然使用视觉变压器特定加密方法提高隐私。我们的方法的有效性表现在对两种医疗领域数据和两种不同的下游任务进行广泛的实验,展示出优于现有分布式学习战略所获得的业绩以及微调基准。由于以拟议方法建立的自我监督模型能够对模式有一个普遍的语义性理解,我们展示了它作为各种医疗任务的任务-认知基础模型的潜力,扩大了医疗领域的适用性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员