We revisit the outlier hypothesis testing framework of Li \emph{et al.} (TIT 2014) and derive fundamental limits for the optimal test under the generalized Neyman-Pearson criterion. In outlier hypothesis testing, one is given multiple observed sequences, where most sequences are generated i.i.d. from a nominal distribution. The task is to discern the set of outlying sequences that are generated from anomalous distributions. The nominal and anomalous distributions are \emph{unknown}. We study the tradeoff among the probabilities of misclassification error, false alarm and false reject for tests that satisfy weak conditions on the rate of decrease of these error probabilities as a function of sequence length. Specifically, we propose a threshold-based test that ensures exponential decay of misclassification error and false alarm probabilities. We study two constraints on the false reject probability, with one constraint being that it is a non-vanishing constant and the other being that it has an exponential decay rate. For both cases, we characterize bounds on the false reject probability, as a function of the threshold, for each pair of nominal and anomalous distributions and demonstrate the optimality of our test under the generalized Neyman-Pearson criterion. We first consider the case of at most one outlying sequence and then generalize our results to the case of multiple outlying sequences where the number of outlying sequences is unknown and each outlying sequence can follow a different anomalous distribution.
翻译:我们重新审视Li \ emph{et al.} (TIT 2014) 的外部假设测试框架(TIT 2014), 并为在通用 Neyman- Pearson 标准下的最佳测试得出基本限值。 在外部假设测试中, 给出了多个观察到的序列, 其中多数序列来自名义分布。 任务在于辨别由异常分布生成的外围序列。 名义和异常分布是 \ emph{ununn 已知 } 。 我们研究了错误分类错误、 错误提醒和错误拒绝在降低错误概率率方面满足薄弱条件的测试的概率之间的权衡。 在总体分布序列中, 我们提出一个基于阈值的测试, 以确保错误分类错误错误和错误警报概率的指数加速衰减。 我们研究关于错误拒绝概率的两个限制, 其中一个制约是它是一个不吉常常态的常态, 另一个制约是它有一个指数衰减率。 对于这两种情况, 我们将错误的概率绑定在错误的概率上, 作为我们每个标准中最常态和最常态序列的一个测试案例的功能。