In medical imaging, obtaining large amounts of labeled data is often a hurdle, because annotations and pathologies are scarce. Anomaly detection is a method that is capable of detecting unseen abnormal data while only being trained on normal (unannotated) data. Several algorithms based on generative adversarial networks (GANs) exist to perform this task, yet certain limitations are in place because of the instability of GANs. This paper proposes a new method by combining an existing method, GANomaly, with progressively growing GANs. The latter is known to be more stable, considering its ability to generate high-resolution images. The method is tested using Fashion MNIST, Medical Out-of-Distribution Analysis Challenge (MOOD), and in-house brain MRI; using patches of sizes 16x16 and 32x32. Progressive GANomaly outperforms a one-class SVM or regular GANomaly on Fashion MNIST. Artificial anomalies are created in MOOD images with varying intensities and diameters. Progressive GANomaly detected the most anomalies with varying intensity and size. Additionally, the intermittent reconstructions are proven to be better from progressive GANomaly. On the in-house brain MRI dataset, regular GANomaly outperformed the other methods.


翻译:在医学成像中,获取大量贴标签数据往往是个障碍,因为说明和病理是稀缺的。异常检测是一种方法,能够探测出看不见的异常数据,而只是接受正常(未附加说明)数据的培训。一些基于基因对抗网络的算法(GANs)存在,但由于GANs的不稳定性,存在某些限制。本文提出一种新的方法,将现有的方法GANomaly(GANOMAly)与逐步增长的GANs相结合。考虑到其生成高分辨率图像的能力,后者是比较稳定的。该方法是能够检测出普通(MNIST)、医疗外扩散分析挑战(MOD)和内部大脑MRI(MRI)的测试方法;使用16x16和32x32大小的补丁。进化GANOmaly(SVM)比一等SVM或普通GANOMAly(GANOIC)的合成方法要好。在MOD图像中制造出高强度和直径不一等的合成异常现象。渐进式的GANONAM(MOD)检测出最强烈的反常态变形,定期的GARI数据也得到更好的利用。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
32+阅读 · 2021年9月16日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
14+阅读 · 2022年5月6日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员