An important task at the onset of a laparoscopic cholecystectomy (LC) operation is the inspection of gallbladder (GB) to evaluate the thickness of its wall, presence of inflammation and extent of fat. Difficulty in visualization of the GB wall vessels may be due to the previous factors, potentially as a result of chronic inflammation or other diseases. In this paper we propose a multiple-instance learning (MIL) technique for assessment of the GB wall vascularity via computer-vision analysis of images from LC operations. The bags correspond to a labeled (low vs. high) vascularity dataset of 181 GB images, from 53 operations. The instances correspond to unlabeled patches extracted from these images. Each patch is represented by a vector with color, texture and statistical features. We compare various state-of-the-art MIL and single-instance learning approaches, as well as a proposed MIL technique based on variational Bayesian inference. The methods were compared for two experimental tasks: image-based and video-based (i.e. patient-based) classification. The proposed approach presents the best performance with accuracy 92.1% and 90.3% for the first and second task, respectively. A significant advantage of the proposed technique is that it does not require the time-consuming task of manual labelling the instances.


翻译:腹腔炎切除(LC)行动开始时的一项重要任务是检查胆囊涂层(GB),以评价其墙壁厚度、炎度和脂肪范围。GB壁容器难以视觉化可能是由于以前的因素,可能是由于慢性炎症或其他疾病造成的。在本文中,我们建议采用多重深入学习(MIL)技术,通过计算机分析LC作业图像来评估GB墙的血管。包与53个作业中181GB图像的标签(低与高)血管数据集相对应。实例与从这些图像中提取的未贴标签的补丁相对应。每个补丁都由带有颜色、纹理和统计特征的矢量表示。我们比较了各种先进的MIL和单深入学习方法,以及基于变异的Bayesian推断而提议的MIL技术。两种实验任务的方法比较了两种实验任务:基于图像的和基于视频的181GB图像的血管数据集(i),从这些例子中提取出未标注的缩略图的缩略图。我们建议的第一种是基于92%的精确度。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年8月8日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
SwapText: Image Based Texts Transfer in Scenes
Arxiv
4+阅读 · 2020年3月18日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年8月8日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员