Deep point cloud registration methods face challenges to partial overlaps and rely on labeled data. To address these issues, we propose UDPReg, an unsupervised deep probabilistic registration framework for point clouds with partial overlaps. Specifically, we first adopt a network to learn posterior probability distributions of Gaussian mixture models (GMMs) from point clouds. To handle partial point cloud registration, we apply the Sinkhorn algorithm to predict the distribution-level correspondences under the constraint of the mixing weights of GMMs. To enable unsupervised learning, we design three distribution consistency-based losses: self-consistency, cross-consistency, and local contrastive. The self-consistency loss is formulated by encouraging GMMs in Euclidean and feature spaces to share identical posterior distributions. The cross-consistency loss derives from the fact that the points of two partially overlapping point clouds belonging to the same clusters share the cluster centroids. The cross-consistency loss allows the network to flexibly learn a transformation-invariant posterior distribution of two aligned point clouds. The local contrastive loss facilitates the network to extract discriminative local features. Our UDPReg achieves competitive performance on the 3DMatch/3DLoMatch and ModelNet/ModelLoNet benchmarks.
翻译:深度点云配准方法在面对部分重叠时面临挑战,并且依赖标记数据。为了解决这些问题,我们提出UDPReg,这是一种用于具有部分重叠的点云的未监督深度概率配准框架。具体而言,我们首先采用网络从点云中学习高斯混合模型(GMM)的后验概率分布。为了处理部分点云配准,我们应用Sinkhorn算法预测在GMM的混合权重约束下的分布级对应关系。为了实现无监督学习,我们设计了三种基于分布一致性的损失:自一致性、交叉一致性和局部对比。自一致性损失由鼓励欧几里得空间和特征空间中的GMM共享相同的后验分布来组成。交叉一致性损失源于两个部分重叠点云的点属于同一簇并且共享簇中心的事实。交叉一致性损失允许网络灵活地学习两个对齐点云的变换不变后验分布。局部对比损失有助于网络提取有区分度的局部特征。我们的UDPReg在3DMatch/3DLoMatch和ModelNet/ModelLoNet基准测试上具有有竞争力的性能。