We introduce the Markov Stochastic Block Model (MSBM): a growth model for community based networks where node attributes are assigned through a Markovian dynamic. We rely on HMMs' literature to design prediction methods that are robust to local clustering errors. We focus specifically on the link prediction and collaborative filtering problems and we introduce a new model selection procedure to infer the number of hidden clusters in the network. Our approaches for reliable prediction in MSBMs are not algorithm-dependent in the sense that they can be applied using your favourite clustering tool. In this paper, we use a recent SDP method to infer the hidden communities and we provide theoretical guarantees. In particular, we identify the relevant signal-to-noise ratio (SNR) in our framework and we prove that the misclassification error decays exponentially fast with respect to this SNR.
翻译:我们引入了Markov斯托切斯特区块模型(MSBM) : 社区网络的增长模型, 节点属性是通过Markovian 动态来分配的。 我们依靠 HMMs 的文献来设计对本地群集错误非常可靠的预测方法。 我们特别侧重于链接预测和协作过滤问题, 我们引入了一个新的模式选择程序, 以推断网络中隐藏的群集数量。 我们用MSBM 进行可靠预测的方法并不取决于算法, 因为它可以使用您最喜爱的群集工具来应用。 在本文中, 我们使用最新的 SDP 方法来推断隐藏的群集, 我们提供理论保证。 特别是, 我们确定了我们框架中相关的信号对噪音比率( SRR), 我们证明错误在 SNR 方面快速衰减 。