Principal Component Analysis (PCA) and other multi-variate models are often used in the analysis of "omics" data. These models contain much information which is currently neither easily accessible nor interpretable. Here we present an algorithmic method which has been developed to integrate this information with existing databases of background knowledge, stored in the form of known sets (for instance genesets or pathways). To make this accessible we have produced a Graphical User Interface (GUI) in Matlab which allows the overlay of known set information onto the loadings plot and thus improves the interpretability of the multi-variate model. For each known set the optimal convex hull, covering a subset of elements from the known set, is found through a search algorithm and displayed. In this paper we discuss two main topics; the details of the search algorithm for the optimal convex hull for this problem and the GUI interface which is freely available for download for academic use.


翻译:分析“ 组合” 数据时经常使用主元件分析( PCA) 和其他多变量模型。 这些模型包含许多目前不易获取和解释的信息。 我们在这里展示了一种算法方法, 将这些信息与现有的背景知识数据库整合起来, 以已知的数据集( 例如基因集或路径) 的形式存储。 为了便于使用, 我们在 Matlab 制作了一个图形用户界面( GUI ), 允许将已知的数据集信息覆盖到加载图中, 从而改进多变量模型的可解释性。 对于每个已知的模型来说, 包含已知集的一组元素的最佳的螺旋体, 是通过搜索算法找到并展示的。 在本文中, 我们讨论两个主要主题; 这一问题的最佳矩形体搜索算法的细节, 以及可自由下载供学术使用的图形界面界面 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
123+阅读 · 2021年8月4日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
7+阅读 · 2021年10月12日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员