Reproducible translation of transcriptomics data has been hampered by the ubiquitous presence of batch effects. Statistical methods for managing batch effects were initially developed in the setting of sample group comparison and later borrowed for other settings such as survival outcome prediction. The most notable such method is ComBat, which adjusts for batches by including it as a covariate alongside sample groups in a linear regression. In survival prediction, however, ComBat is used without definable groups for survival outcome and is done sequentially with survival regression for a potentially confounded outcome. To address these issues, we propose a new method, called BatMan ("BATch MitigAtion via stratificatioN"). It adjusts batches as strata in survival regression and utilize variable selection methods such as LASSO to handle high dimensionality. We assess the performance of BatMan in comparison with ComBat, each used either alone or in conjunction with data normalization, in a re-sampling-based simulation study under various levels of predictive signal strength and patterns of batch-outcome association. Our simulations show that (1) BatMan outperforms ComBat in nearly all scenarios when there are batch effects in the data, and (2) their performance can be worsened by the addition of data normalization. We further evaluate them using microRNA data for ovarian cancer from the Cancer Genome Atlas, and find that BatMan outforms ComBat while the addition of data normalization worsens the prediction. Our study thus shows the advantage of BatMan and raises caution about the naive use of data normalization in the context of developing survival prediction models. The BatMan method and the simulation tool for performance assessment are implemented in R and publicly available at https://github.com/LXQin/PRECISION.survival.


翻译:运算组数据的正常化翻译因批量效应的正常化而受阻。管理批量效应的统计方法最初是在样本组比较时开发的,后来又为生存结果预测等其他设置而借用。最显著的方法是ComBat,该方法将批量调整,将批量与样本组一起纳入线性回归中的共变。然而,在生存预测中,ComBat 使用没有可定义的组群来求生存结果,而是与生存回归相继进行生存回归。为了解决这些问题,我们提出了一个名为BatMan(BatMan)的新的方法(“BATch MitigAtion通过stratificatioN” ) 。该方法将批量调整为生存回归中的层,并使用LASSO等变量选择方法处理高维度回归。我们评估了巴特曼的性能与ComBatt的对比,每件都单独或与数据正常化一起使用,在预测性变现的模型中,根据预测性能信号强度和分批输出环境环境进行模拟研究。我们所作的模拟模型显示(1) BatMan 和BatBatBat Bat 数据在数据中,其性数据在数据中可以进一步进行数据分析中进行数据变变变现。在数据中进行数据变现数据分析,在数据中进行数据变现数据分析时,在数据中进行数据变现数据分析。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月19日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员