In this paper we introduce general transfer operators between high-order and low-order refined finite element spaces that can be used to couple high-order and low-order simulations. Under natural restrictions on the low-order refined space we prove that both the high-to-low-order and low-to-high-order linear mappings are conservative, constant preserving and high-order accurate. While the proofs apply to affine geometries, numerical experiments indicate that the results hold for more general curved and mixed meshes. These operators also have applications in the context of coarsening solution fields defined on meshes with nonconforming refinement. The transfer operators for $H^1$ finite element spaces require a globally coupled solve, for which robust and efficient preconditioners are developed. We present several numerical results confirming our analysis and demonstrate the utility of the new mappings in the context of adaptive mesh refinement and conservative multi-discretization coupling.


翻译:在本文中,我们引入了高顺序和低顺序精细的有限元素空间之间的一般转移操作员,这些空间可用于对高顺序和低顺序模拟。在对低顺序精密空间的自然限制下,我们证明高到低顺序线性绘图和低到高顺序线性绘图都是保守的、不断保存的和高顺序准确的。虽然这些证据适用于近距离地理比例,但数字实验表明,结果支持了更一般曲线和混合的网目。这些操作员还应用了在模贝上定义的粗化溶域中和不达标的改进。$H$1$的有限元素空间的转移操作员需要一种全球结合的解决方案,为此,我们提出了一些数字结果,证实了我们的分析,并展示了在适应性网目精细和保守的多分解组合中新绘图的效用。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员