Satellite imagery analysis plays a vital role in remote sensing, but the information loss caused by cloud cover seriously hinders its application. This study presents a high-performance cloud removal architecture called Progressive Multi-scale Attention Autoencoder (PMAA), which simultaneously leverages global and local information. It mainly consists of a cloud detection backbone and a cloud removal module. The cloud detection backbone uses cloud masks to reinforce cloudy areas to prompt the cloud removal module. The cloud removal module mainly comprises a novel Multi-scale Attention Module (MAM) and a Local Interaction Module (LIM). PMAA establishes the long-range dependency of multi-scale features using MAM and modulates the reconstruction of the fine-grained details using LIM, allowing for the simultaneous representation of fine- and coarse-grained features at the same level. With the help of diverse and multi-scale feature representation, PMAA outperforms the previous state-of-the-art model CTGAN consistently on the Sen2_MTC_Old and Sen2_MTC_New datasets. Furthermore, PMAA has a considerable efficiency advantage, with only 0.5% and 14.6% of the parameters and computational complexity of CTGAN, respectively. These extensive results highlight the potential of PMAA as a lightweight cloud removal network suitable for deployment on edge devices. We will release the code and trained models to facilitate the study in this direction.
翻译:摘要:卫星图像分析在遥感中发挥着重要作用,但由于云覆盖导致的信息损失严重限制了其应用。本研究提出了一种高性能的云去除结构,名为“渐进式多尺度注意力自编码器”(PMAA),同时利用全局和局部信息。它主要由云检测骨干和云去除模块组成。云检测骨干使用云掩码来强化云区域,以促进云去除模块。云除模块主要包括一个新的多尺度注意力模块(MAM)和一个局部交互模块(LIM)。PMAA利用MAM建立多尺度特征的长程依赖性,并利用LIM调节精细细节的重构,从而允许在同一级别上同时表示精细和粗粒度特征。凭借多样化和多尺度特征表征的帮助,PMAA不断超越先前的最新模型CTGAN,使其在Sen2_MTC_Old和Sen2_MTC_New数据集上表现出色。此外,PMAA具有相当的效率优势,仅占CTGAN的0.5%和14.6%的参数和计算复杂度。这些广泛的结果突出了PMAA作为轻量级云去除网络的潜力,适合在边缘设备上部署。我们将发布代码和训练模型,以促进该方向的研究。