项目名称: 纳米结构MgAgSb基合金的低温热电性能研究

项目编号: No.51471061

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 隋解和

作者单位: 哈尔滨工业大学

项目金额: 85万元

中文摘要: 热电材料历经几十年的发展,在材料体系、热电理论及性能方面均取得长足进步,但在低温领域,Bi2Te3基材料是唯一ZT约为1的低温热电材料,且Te是极度稀缺资源。因此,迫切需要研发资源丰富、高性能的新型低温热电材料。本项目在高能球磨与热压烧结相结合制备高性能、纯相且纳米结构MgAgSb合金的基础上,提出采用掺杂调节MgAgSb合金热电输运特性,进一步提高热电性能的研究思路;采用第一性原理与波尔兹曼传输理论优选掺杂元素,设计MgAgSb基合金成分;研究掺杂对MgAgSb合金组织结构、相变特征及热电性能的影响规律,查明掺杂改善MgAgSb合金热电性能的作用机理,揭示MgAgSb基合金的热电输运机制,优化出高性能MgAgSb基合金的成分设计准则,研制出资源丰富、高性能的新型MgAgSb基低温热电材料,这些研究对于丰富热电材料理论及发展新型热电材料具有重要意义。

中文关键词: MgAgSb合金;热电材料;纳米结构;相变;热电性能

英文摘要: Over the past decades, in spite of the substantial improvements on thermoelectric materials system, theory and performance, Bi2Te3 having ZT of around 1 since its first discovery remain to be the only material at low temperature applications.Meanwhile, Te is not earth abundant. Therefore, it is very urgent to develop novel low temperature thermoelectric materials with element rich and high performance. On the basis of the previous result on the nanostructured phase pure MgAgSb alloy with high performance, doping is put forward to tune thermoelectric transport parameters and improve thermoelectric properties. The first principle and Boltzmann transport theory is used to optimize doping element and design composition of MgAgSb based alloys. The effect of doping on the microstructure, phase transformation characteristic and thermoelectric properties is investigated to clarify the thermoelectric transport mechanism of MaAgSb based alloys. The design rule on the composition of MaAgSb based alloys is optimized. Finally, the low temperature MgAgSb based thermoelectric materials with element rich and high performance is developed. This enriches the thermoelectric theory and provides guildline to explores novel thermoelectric materials.

英文关键词: MgAgSb alloys;Thermoelectric materials;Nanostructure;Phase transformation;Thermoelectric properties

成为VIP会员查看完整内容
0

相关内容

【WWW2022】TaxoEnrich:通过结构语义表示的自监督分类法补全
深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
182+阅读 · 2020年11月23日
专知会员服务
28+阅读 · 2020年8月8日
深度生成模型综述
专知
1+阅读 · 2022年1月2日
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
24+阅读 · 2021年6月25日
小贴士
相关主题
相关VIP内容
【WWW2022】TaxoEnrich:通过结构语义表示的自监督分类法补全
深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
182+阅读 · 2020年11月23日
专知会员服务
28+阅读 · 2020年8月8日
相关资讯
深度生成模型综述
专知
1+阅读 · 2022年1月2日
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员